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ABSTRACT

Let G be an algebraic group defined over a field k. We call g ∈ G real if g

is conjugate to g−1 and g ∈ G(k) as k-real if g is real in G(k). An element

g ∈ G is strongly real if ∃h ∈ G, h2 = 1 (i.e., h is an involution) such

that hgh−1 = g−1. Clearly, strongly real elements are real and are product

of two involutions. Let G be a connected adjoint semisimple group over

a perfect field k, with −1 in the Weyl group. We prove that any strongly

regular k-real element in G(k) is strongly k-real (i.e., is a product of two

involutions in G(k)). For classical groups, with some mild exceptions, over

an arbitrary field k of characteristic not 2, we prove that k-real semisimple

elements are strongly k-real. We compute an obstruction to reality and

prove some results on reality specific to fields k with cd(k) ≤ 1. Finally,

we prove that in a group G of type G2 over k, characteristic of k different

from 2 and 3, any real element in G(k) is strongly k-real. This extends our

results in [ST05], on reality for semisimple and unipotent real elements in

groups of type G2.

1. Introduction

Let G be an algebraic group defined over a field k. We call an element g ∈ G real

if g is conjugate to g−1 in G. We say g ∈ G(k) is k-real if there exists h ∈ G(k)

such that hgh−1 = g−1. Note that every element in the conjugacy class of a real

element g is real. Such conjugacy classes are called real. An element t ∈ G is

called an involution if t2 = 1. If an involution in G conjugates g to g−1, then

Received July 19, 2006 and in revised form November 7, 2006

1



2 A. SINGH AND M. THAKUR Isr. J. Math.

it follows that g is a product of two involutions in G and conversely, any such

element is real. An element g ∈ G(k) is called strongly real if g is a product

of two involutions in G(k).

In this paper, we deal with results concerning real elements in algebraic

groups, defined over an arbitrary field. An element t in a connected algebraic

group G is called regular if the centralizer of t has minimal dimension (the

rank of G), strongly regular if its centralizer in G is a maximal torus. Let G

be a connected semisimple algebraic group of adjoint type defined over a perfect

field k. Suppose the longest element w0 of the Weyl group W (G, T ) acts by

−1 on the set of roots with respect to a fixed maximal torus T . Then for a

strongly regular element t ∈ G(k), we prove that t is real in G(k) if and only if

t is strongly real in G(k) (Theorem 2.1.2). Moreover, we prove that every ele-

ment of a maximal torus, containing a real strongly regular element, is strongly

real. We show that in a split connected adjoint semisimple group G defined

over k, with −1 in its Weyl group, every element in a k-split maximal torus

is strongly real (Proposition 2.2.3). We study the structure of real semisimple

elements in groups over fields with cd(k) ≤ 1. Let k be such a field. Let G be a

connected reductive group defined over k. Then, semisimple elements in G(k)

are real in G(k) (Theorem 2.3.1). It follows that if G is connected semisimple

of adjoint type, with −1 in its Weyl group, then every semisimple element in

G(k) is strongly real in G(k) (Theorem 2.3.3). This also shows that any regular

element in such a group is real.

In later sections, we prove, with some exceptions, that k-real semisimple

elements in classical groups over a field k are strongly k-real. We describe

these results here for convenience. For n 6≡ 2 (mod 4), we prove that any

k-real element in SLn(k) is strongly k-real in SLn(k) (Theorem 3.1.1). We

prove that any k-real semisimple element in PSp(2n, k) is strongly k-real for

n ≥ 1 (Theorem 3.5.3). Let Q be a nondegenerate quadratic form over k in

any dimension. Then k-real semisimple elements in SO(Q) are strongly k-

real (Theorem 3.4.6). Let K be a quadratic extension of k and let h be a

nondegenerate hermitian form on a K-vector space V . We prove that k-real

semisimple elements in U(V, h) are strongly k-real in U(V, h) (Theorem 3.6.2).

We show by examples the result is false for unipotents in U(V, h). Finally, let

G be a group of type G2 defined over k, characteristic of k different from 2, 3.

We prove that any k-real element in G(k) is strongly k-real (Theorem A.1.4),

this extends our results in [ST05].
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Our results, combined with those in [Pr98], [Pr99], suggest a relation between

strongly real classes in groups with their orthogonal representations. This will

be taken up in a future project.

Notation: In what follows, we denote the centralizer of g ∈ G by ZG(g), the

center of G by Z(G) and a block diagonal matrix by diag(A1, . . . , An) where

Ai’s are the block entries on the diagonal. Transpose of a matrix A is denoted

by tA.

2. Reality in linear algebraic groups

In this section we discuss reality for general linear algebraic groups. We also

compute a cohomological obstruction to reality. We assume in this section that

k is a perfect field and characteristic of k is not 2.

2.1. Strongly regular real elements. An element t in a connected lin-

ear algebraic group G is called regular if its centralizer ZG(t) has minimal

dimension among all centralizers.

An element is called strongly regular if its centralizer in G is a maxi-

mal torus. Let G be a connected, adjoint simple algebraic group defined over

k such that the longest element w0 in the Weyl group W of G with respect

to a maximal torus T acts by −1 on the roots. The adjoint groups of type

A1, Bl, Cl, D2l(l > 2), E7, E8, F4, G2 are precisely the simple groups which sat-

isfy the above hypothesis. For the groups of the above type we record below a

theorem of Richardson and Springer ([RS90], Proposition 8.22) which plays an

important role in our investigation.

Theorem 2.1.1 (Richardson, Springer): Let G be a simple adjoint group over

an algebraically closed field k. Let T be a maximal torus of G and let c ∈ W (T )

be an involution. Then there exists an involution n ∈ N(T ) which represents c.

We have,

Theorem 2.1.2: Let G be a connected semisimple adjoint group defined over

a field k (not assumed algebraically closed), with −1 in its Weyl group. Let

t ∈ G(k) be a strongly regular element. Then t is real in G(k) if and only if

t is strongly real in G(k). Moreover, every element of a maximal torus, which

contains a strongly regular real element, is strongly real in G(k).
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Proof. Let t ∈ G(k) be a strongly regular real element and let g ∈ G(k) be

such that gtg−1 = t−1. Let T be a maximal torus in G defined over k which

contains t. Theorem 2.1.1 implies that there exists an involution n ∈ N(T )(k̄)

such that nsn−1 = s−1 for all s ∈ T . Thus ntn = t−1 and g ∈ nZG(t) = nT .

Let g = ns0, for s0 ∈ T . Then g2 = ns0ns0 = s−1
0 s0 = 1. Hence g is an

involution and g ∈ G(k). Therefore t is a product of two involutions g and gt

in G(k).

Suppose now T is a maximal torus in G defined over k and T (k) contains a

strongly regular real element t. Let s ∈ T (k). Suppose g ∈ G(k) conjugates t

to t−1. Then we have proved that g2 = 1. We claim that g conjugates s to s−1.

From calculations in the paragraph above, we have g = ns0 for some s0 ∈ T .

Then gsg−1 = ns0ss
−1
0 n−1 = nsn−1 = s−1. But since g is an involution in

G(k), s is a product of two involutions in G(k).

We note that in groups G satisfying the hypothesis of the theorem, there are

strongly regular elements in G(k) which are not real in G(k). In [ST05] (see

Theorem 6.3), it was shown that for a group G of type G2 defined over k, a

semisimple element in G(k) is real if and only if it is a product of two involutions

in G(k). Examples of semisimple elements ([ST05], Theorems 6.10, 6.11 and

6.12) which are not real were also constructed in the same paper. Hence in a

maximal torus containing such an element no strongly regular element is real.

2.2. An obstruction to reality. The results in this subsection are known

to experts (ref. [S65], Section 11, [Se97], Chapter III, Section 2.3). However, we

include some with proofs for the sake of completeness. Let G be a connected

linear algebraic group defined over a field k. In this section, we assume that the

field k is perfect. We have,

Lemma 2.2.1: Let g ∈ G. Let g = gsgu be the Jordan decomposition of g in

G. Let H be the centralizer of gs in G. Then, g is real in G if and only if gs is

real and g−1
u , xgux−1 are conjugate in H , where xgsx

−1 = g−1
s .

Proof. Let g be real in G, i.e., there exists x ∈ G such that xgx−1 = g−1. Then

x conjugates gs and gu to g−1
s and g−1

u respectively.

Conversely let h ∈ H such that hg−1
u h−1 = xgux−1. Then,

h−1xg(h−1x)−1 = h−1xgx−1h = h−1xgsx
−1xgux−1h = h−1g−1

s xgux−1h

= g−1
s h−1xgux−1h = g−1

s g−1
u = g−1.
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Hence g is real in G.

It is not true in general for an algebraic group G that g ∈ G is real if and

only if gs is real and gu is real. We give examples to illustrate this situation.

Example 1: Let G = GL4(k). We take s = diag(λ, λ, λ−1, λ−1) with λ2 6= 1,

u = diag (( 1 0
0 1 ) , ( 1 1

0 1 )) and g = su. Then gs = s, gu = u and the centralizer of s

in G is ZGL4(k)(s) = {diag(A, B) : A, B ∈ GL2(k)}. The elements s and u are

real but g is not real. In fact xsx−1 = s−1 where

x =








0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0








.

Any matrix

y = diag

((

1 0

0 1

)

,

(

a b

0 −a

))

∈ GL4(k)

conjugates u to u−1. The elements u−1 and

xux−1 = diag

((

1 1

0 1

)

,

(

1 0

0 1

))

are not conjugate in ZGL4(k)(s). Hence g is not real by Lemma 2.2.1.

Example 2: In G = G2 over a finite field k, all semisimple as well as unipo-

tent elements in G(k) are strongly real but still there are nonreal elements

(ref. [ST05], Theorem 6.11).

Below we mention a cohomological obstruction to reality over the base field

k. Let G be a connected linear algebraic group defined over k. Suppose

t ∈ G(k) is real in G(k̄). We put H = ZG(t), the centralizer of t in G. Let

X = {x ∈ G : xtx−1 = t−1}. Then X is an H-torsor defined over k with

H-action given by h.x = xh for h ∈ H and x ∈ X .

Since t is real over k̄, we have X 6= φ. The torsor X corresponds to an element

of H1(k, H) ([Se97], Chapter 1, Section 5.2, Proposition 33). Let x ∈ X and γ

be the cocycle corresponding to X . Then γ is given by γ(σ) = x−1σ(x) for all

σ ∈ Γ = Gal(k̄/k). We have,
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Proposition 2.2.2: Let G be a connected algebraic group defined over k. Let

t ∈ G(k) be real over k̄. Then t is real in G(k) if and only γ, as above, represents

the trivial cocycle in H1(k, H) where H is the centralizer of t in G.

Proof. Let X be the H-torsor defined above. Then γ ∈ H1(k, H) is trivial if

and only if X has a k-rational point which is equivalent to t is k-real.

By the above, if H1(k, H) is trivial then t is real in G(k). By a theorem of

Steinberg ([S65], Theorem 1.9, also see [Se97], Chapter III, section 2.3) if H is

a connected reductive group and cd(k) ≤ 1 or H is connected with k perfect of

cd(k) ≤ 1, we have H1(k, H) = 0. In these situations t is real.

Proposition 2.2.3: Let G be a split connected semisimple adjoint group de-

fined over an arbitrary field k and suppose −1 belongs to the Weyl group of G.

Let T be a k-split maximal torus in G. Then every element of T (k) is strongly

real.

Proof. By Theorem 2.1.1, there exists n0 ∈ N(T )(k̄) such that n0
2 = 1 and

n0sn0
−1 = s−1 for all s ∈ T . Consider the Galois cocycle γ(σ) = n0σ(n0) for

σ ∈ Γ = Gal(k̄/k). Since T is defined over k, we have, for s ∈ T and σ ∈ Γ,

σ(n0)sσ(n0)
−1 = σ(n0σ

−1(s)n0) = σ(σ−1(s−1)) = s−1.

Hence, we must have, in the Weyl group W = N(T )/T , n0T = σ(n0)T . There-

fore γ(σ) = n0σ(n0) ∈ T . Hence γ is a 1-cocycle in H1(k, T ). But since T is

k-split, H1(k, T ) = 0. Hence there is s ∈ T such that

γ(σ) = n0σ(n0) = s−1σ(s).

This gives sn0 = σ(sn0) for all σ ∈ Γ. Hence sn0 ∈ T (k). Also

(sn0)
2 = sn0sn0 = ss−1 = 1.

Therefore g = sn0 is an involution in T (k) and for any t ∈ T (k), we have,

gtg−1 = gtg = sn0tn0s
−1 = st−1s−1 = t−1.

Thus (gt)2 = 1 and t = g.gt. Hence t is strongly real.

2.3. Reality over fields of cd(k) ≤ 1. In this section we discuss reality for

algebraic groups over fields k with cd(k) ≤ 1. We have
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Theorem 2.3.1: Let k be a field with cd(k) ≤ 1. Let G be a connected reduc-

tive group defined over k with −1 in its Weyl group. Then every semisimple

element in G(k) is real in G(k).

Proof. Let t ∈ G(k) be semisimple. Let T be a maximal torus defined over k

with t ∈ T (k). Let W = N(T )/T be the Weyl group of G, where N(T ) is the

normalizer of T in G. We have the exact sequence

1 → T → N(T ) → W → 1.

The corresponding Galois cohomology sequence is

1 → T (k) → N(T )(k) → W (k) → H1(k, T ) → · · · .

Since cd(k) ≤ 1, by Steinberg’s theorem ([S65], Theorem 1.9), H1(k, T ) = 0.

Hence the longest element w0 in the Weyl group, which acts by −1 on the set

of roots, lifts to an element h ∈ N(T )(k). Hence hth−1 = t−1 with h ∈ G(k)

and t is real in G(k).

Corollary 2.3.2: Let G and k be as in the above theorem. Then every regular

element of G is real.

Proof. Let g ∈ G be regular and g = gsgu be the Jordan decomposition of

g in G with gs semisimple and gu unipotent. Then, by the above theorem,

hgsh
−1 = g−1

s for some h ∈ G. Then hguh−1 and g−1
u are regular unipo-

tents in ZG(gs)
0 and hence there is x ∈ ZG(gs) such that xhguh−1x−1 = g−1

u .

Then (xh)g(xh)−1 = g−1 and hence g is real (see Corollary 1.9, Chapter III in

[SS68]).

Theorem 2.3.3: Let k be a field with cd(k) ≤ 1. Let G be a connected

semisimple adjoint group defined over k with −1 in its Weyl group. Then every

semisimple element in G(k) is strongly real in G(k).

Proof. We may assume G is simple. Let t ∈ G(k) be a semisimple element. Let

T be a maximal torus in G defined over k which contains t, i.e., t ∈ T (k). Since

cd(k) ≤ 1, by Steinberg ([S65], Theorem 1.9) we have H1(k, T ) = 0. The rest of

the proof follows exactly along the lines of the proof of Proposition 2.2.3.

Remark: It seems likely that the results of this section are valid over nonperfect

fields also, however, we have not been able to prove this.
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3. Reality in classical groups

In this section we discuss structure of real elements in classical groups. We

assume k is an arbitrary field of characteristic not 2.

3.1. The groups GLn(k) and SLn(k). It was proved by Wonenburger ([W66],

Theorem 1) that an element of GLn(k) is real if and only if it is strongly real

in GLn(k). However, similar result is false for matrices over division algebras.

In [E79], (Lemmas 2 and 3) Ellers constructs an example of a simple transfor-

mation on a vector space V over the real quaternion division algebra H, which

is conjugate to its inverse but is not a product of two involutions. This is also

evident by looking at the following example. Let H = R.1 ⊕ R.i ⊕ R.j ⊕ R.ij

where i, j, k have usual meanings. In the group GL1(H), the element i is con-

jugate to its inverse by j. The only nontrivial element of GL1(H) which is an

involution is −1 and hence i is not a product of two involutions in GL1(H).

In this subsection we explore the structure of real elements in SLn(k). We

follow the proof of Wonenburger for GLn(k) (ref. [W66], Theorem 1) and modify

it for our purpose.

Theorem 3.1.1: Let V be a vector space of dimension n over k and let

t ∈ SL(V )(k). Suppose n 6≡ 2 (mod 4). Then t is real in SL(V )(k) if and

only if t is strongly real in SL(V )(k).

Proof. Let δ1(X), . . . , δn(X) be the invariant factors of t in k[X ]. Since t is real,

each δi(X) is self-reciprocal. The space V decomposes as V =
⊕n

i=1 Vi, where

each Vi is a cyclic, t invariant subspace of V and the minimal polynomial of

ti = t|Vi
is the self-reciprocal polynomial δi(X). We shall construct involutions

Hi in GL(Vi), conjugating ti to t−1
i , with det(Hi) = (−1)m if dimension of

Vi = 2m and det(Hi) = (−1)m or (−1)m+1 when dimension of Vi = 2m + 1.

Then H =
⊕n

i=1 Hi is an involution conjugating t to t−1 and det(H) = 1 if

dim(V ) 6≡ 2 (mod 4).

Now ti is a cyclic linear transformation on the vector space Vi with self-

reciprocal characteristic polynomial χti
(X) = δi(X). Hence, we can write

χti
(X) = (X − 1)r(X + 1)sf(X) where f(±1) 6= 0 and Vi = W−1 ⊕ W1 ⊕ W0,

where W−1, W1 and W0 are the kernels of (ti − 1)r, (ti + 1)s and f(ti) respec-

tively. To produce the involution Hi on Vi as above, it suffices to do so on

each of W−1, W1 and W0. Hence we are reduced to the following cases. Let
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t be a cyclic linear transformation on a vector space V with self reciprocal

characteristic polynomial χt(X), of the following two types;

1. the degree of χt(X) is even, say 2m,

2. χt(X) = (X − 1)2m+1 or (X + 1)2m+1.

We claim that in the first case t is conjugate to t−1 by an involution whose

determinant is (−1)m and in the second, there are involutions with determinant

(−1)m or (−1)m+1 conjugating t to t−1. We first prove that in both the cases,

V admits a decomposition V = V+ ⊕ V−, invariant under t + t−1 and such that

(t − t−1)V± ⊂ V∓.

In the first case, since V is cyclic, there is a vector u ∈ V such that E =

{u, tu, . . . , t2m−1u} is a basis of V . Set Smu = y. Then

B = {y, (t + t−1)y, . . . , (tm−1 + t−m+1)y, (t − t−1)y, . . . , (tm − t−m)y}

is a basis of V . Let V+ denote the subspace generated by the first m vectors of

B and V− that by the latter m vectors. Then t + t−1 leaves V+ as well as V−

invariant, (t − t−1)V± ⊂ V∓ and V = V+ ⊕ V−. In the second case, we take

B = {y, (t + t−1)y, . . . , (tm + t−m)y, (t − t−1)y, . . . , (tm − t−m)y}

as a basis of V and V+ as the span of the first m + 1 vectors from B and V−

as the span of the latter m. In the first case, let H = 1|P ⊕ −1|Q. Then H

is an involution which conjugates t to t−1 and has determinant (−1)m. In the

second case, we consider H1 = 1|V+
⊕−1|V−

and H2 = −1|V+
⊕ 1|V−

. Then H1

and H2 both are involutions which conjugate t to t−1 and have determinants

(−1)m and (−1)m+1 respectively.

Remarks: 1. An element S = diag(α, α−1, β, β−1, γ, γ−1) ∈ SL6(k) such that

all the diagonal entries are distinct, can be conjugated to its inverse by

H = diag

((

0 −1

1 0

)

,

(

0 −1

1 0

)

,

(

0 −1

1 0

))

∈ SL6(k)

where H2 = −1. In fact any element T ∈ SL6(k) such that TST−1 = S−1 is of

the form:

T = diag

((

0 a

ã 0

)

,

(

0 b

b̃ 0

)

,

(

0 c

c̃ 0

))
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where aãbb̃cc̃ = −1. Suppose T 2 = 1. Then aã = 1, bb̃ = 1, cc̃ = 1. This

implies that aãbb̃cc̃ = 1, a contradiction. Hence there is no involution in SL6(k)

conjugating S to S−1, i.e., S is real semisimple but not strongly real in SL6(k).

2. Let us take A = ( 1 1
0 1 ), a unipotent element in SL2(k). Then any element

X ∈ GL2(k) such that XAX−1 = A−1 has the form X =
(

a b
0 −a

)
. Then, A

is conjugate to A−1 in SL2(k) if and only if −1 is a square in k. In that case

(−1 is a square in k) the element X which conjugates A to its inverse satisfies

X2 = −1, not an involution, and hence A is not strongly real in SL2(k).

3.2. Groups of type A1. In this subsection we study real semisimple elements

in SL2(k) and PSL2(k) = SL2(k)/Z(SL2(k)). Though the proofs of Corol-

lary 3.2.2, Proposition 3.2.4 and 3.2.5 follow essentially from Theorem 2.1.2, we

give proofs with explicit computations. We fix an algebraic closure k̄ of k. Let

G = SL2(k̄). Fix the maximal torus T = {diag(α, α−1) : α ∈ k̄∗} in G.

Lemma 3.2.1: Every semisimple element of G = SL2(k̄) is real in G. The

only involutions in G are {1,−1}, hence noncentral semisimple elements are

not a product of involutions in G. Moreover, every semisimple element of G is

conjugate to its inverse by an involution in GL2(k̄), hence is strongly real in

GL2(k̄).

Proof. Let t ∈ SL2(k̄) be semisimple.

First, assume that t = diag(α, α−1) ∈ T . Let g =
(

0 −1
1 0

)
∈ SL2(k̄). Then

g2 = −1 and gtg−1 = t−1. Hence, for any t ∈ T , gtg−1 = t−1.

Now let n = ( 0 1
1 0 ). Then we have, for any t ∈ T , ntn−1 = t−1 and n is

an involution with det(n) = −1. Hence, for any t ∈ T , we have t = n.nt,

a product of two involutions in GL2(k̄). If s ∈ SL2(k̄) is semisimple then

gsg−1 ∈ T for some g ∈ SL2(k̄). If gsg−1 = ρ1ρ2, ρi ∈ GL2(k̄), ρ2
i = 1, then

s = g−1ρ1g.g−1ρ2g, and g−1ρig are involutions in GL2(k̄).

Corollary 3.2.2: Let G = PSL2(k̄) and t be a semisimple element in G.

Then t is real in G if and only if t is strongly real in G.

Proof. Let t as above be real. Let t0 ∈ SL2(k̄) be a representative of t. Then

t0 is either conjugate to t−1
0 or −t−1

0 in SL2(k̄). When t0 is conjugate to t−1
0 , it

follows from the previous lemma that there exists an element s ∈ SL2(k̄) with

s2 = −1 such that st0s
−1 = t−1

0 . We have t0 = (−s).(st0) and hence t is a

product of two involutions in PSL2(k̄).
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Now suppose t0 is conjugate to −t−1
0 in SL2(k̄). Then the characteristic

polynomial of t0 is X2+1. In this case t itself is an involution in PSL2(k̄).

We need

Lemma 3.2.3: Let t ∈ SL2(k) be a semisimple element. Then t is either

strongly regular or central in SL2(k).

Hence we can produce real elements in SL2(k), as in Lemma 3.2.1, which are

not a product of two involutions in SL2(k).

Proposition 3.2.4: Let t ∈ PSL2(k) be a semisimple element. Then t is real

in PSL2(k) if and only if t is strongly real in PSL2(k).

Proof. Let t0 ∈ SL2(k) be a representative of t. Since t is real in PSL2(k), it

follows that t0 is either conjugate to t0
−1 or −t0

−1 in SL2(k). In the second

case, the characteristic polynomial of t0 must be X2 + 1 and hence t0
2 = −1.

For the first case we prove that there exists s ∈ SL2(k) with s2 = −1 such that

st0s
−1 = t−1.

If t0 is central, it is either 1 or −1. Hence we may assume that the element

t0 is conjugate to the matrix t1 = diag(α, α−1) in SL2(k̄), for some α ∈ k̄ with

α2 6= 1. Let

n =

(

0 −1

1 0

)

∈ SL2(k̄).

Then nt1n
−1 = t−1

1 and n2 = −1. In fact, n conjugates every element of the

torus T1 = {diag(γ, γ−1) : γ ∈ k̄∗} to its inverse. Hence there exists h ∈ SL2(k̄)

such that ht0h
−1 = t0

−1 and h2 = −1. Moreover, h conjugates every element

of the maximal torus T containing t0, to its inverse. Since t0 is real in SL2(k),

there exists g ∈ SL2(k) such that gt0g
−1 = t0

−1. Then g ∈ hZSL2(k̄)(t0). Since

t0 is not central (by Lemma 3.2.3) we have ZSL2(k̄)(t0) = T . We write g = hx

where x ∈ T . Then g2 = hxhx = −hxh−1x = −x−1x = −1 and this proves the

required result.

We now consider Q, a quaternion algebra over k. It is a central simple algebra

over k of degree 2. We note that SL1(Q) = {x ∈ Q∗ : Nrd(x) = 1} is a form of

SL2 over k. We denote the group SL1(Q)/Z(SL1(Q)) by PSL1(Q).
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Proposition 3.2.5: Let G = PSL1(Q) and t ∈ G be a semisimple element.

Then, t is real in PSL1(Q) if and only if t is strongly real in PSL1(Q). Fur-

thermore, G = SL1(Q) has real elements which are not strongly real.

Proof. First we observe that an element t ∈ Q∗ is either strongly regular or

central. Proof of this fact and the rest of the proposition is on similar lines as

in Lemma 3.2.3 and Proposition 3.2.4.

3.3. SL1(D), deg(D) odd. Now we consider anisotropic simple groups of type

An, for n even. These are the groups SL1(D) for central division algebras of

degree n + 1. Let D be a central division algebra over a field k, with degree D

odd. Let G = D∗ or G = SL1(D) = {x ∈ D∗ : Nrd(x) = 1}. We have

Theorem 3.3.1: Let G be as above. Then the only real elements in G = D∗

are ±1. In G = SL1(D), there are no nontrivial real elements.

Proof. We first prove that there are no noncentral real element in G and there

are no noncentral involutions in G. Let t ∈ G be a real element which is not

in the center of D. Then k(t) is a subfield 6= k contained in D and has a field

automorphism given by t 7→ t−1 of order two. Hence the degree of k(t) over k

is even. But degree of D being odd, D can not contain a field extension of even

degree. Hence there are no real elements which are not in the center of G.

Now let t ∈ G be a noncentral involution. Then k(t) is a field extension over

k of even degree. Following similar argument as in the previous paragraph, we

get a contradiction. Hence any involution in G is in the center of G. Since D is

central and degree D is odd, any such involution is trivial. This completes the

proof.

Corollary 3.3.2: Let D be a central division algebra over a field k, with

degree D odd. Let σ be an involution on D. Then the group Iso(D, σ) =

{x ∈ D : xσ(x) = 1} has no nontrivial real elements.

Proof. Since Iso(D, σ) ⊂ D∗, the result follows from the above theorem.

We remark that ([KMRT98], Corollary 2.8 and Section 12.B) the group

Iso(D, σ), for σ of the first kind, is a form of the orthogonal group. The

group Iso(D, σ), for σ of the second kind, is a form of the unitary group. Hence

the results above prove the absence of nontrivial real elements in anisotropic
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k-forms of orthogonal and unitary groups when the degree of the underlying

division algebra is odd.

3.4. Orthogonal groups. Let V be a vector space over k with a nonde-

generate quadratic form Q. We denote the orthogonal group by O(Q). Then

Wonenburger proved ([W66], Theorem 2),

Proposition 3.4.1: Any element of the orthogonal group O(Q) is strongly

real, i.e., the group O(Q) is bireflectional. Hence every element of O(Q) is real.

Djokovic ([D71], Theorem 1) extended this result to fields of characteristic 2.

However Knuppel and Nielsen proved ([KN87], Theorem A)

Proposition 3.4.2: The group SO(Q) is trireflectional, except when dim(V ) =

2 and V 6= H3, where H3 is the hyperbolic plane over F3. The group SO(Q) is

bireflectional if and only if dim(V ) 6≡ 2 (mod 4) or V = H3, and hence in this

case every element is real.

They give necessary and sufficient condition for an element in special orthogonal

group to be strongly real ([KN87], Proposition 3.3).

Proposition 3.4.3: Let t ∈ SO(Q). Then t is a product of two involutions

in SO(Q) if and only if dim(V ) 6≡ 2 (mod 4) or an orthogonal decomposition

of V into orthogonally indecomposable t-modules contains an odd dimensional

summand.

Proof. We shall indicate the proof when t is semisimple, since that concerns

us. Note that when dim(V ) = 2, any ρ ∈ O(Q) − SO(Q) satisfies ρ2 = 1 and

ρtρ−1 = t−1. Let t ∈ SO(Q) be any semisimple element, where dim(V ) 6≡ 2

(mod 4). Let V̄ = V ⊗ k̄ and, for α ∈ k̄∗, let V̄α = {x ∈ V̄ : t(x) = αx} and

W̄α = V̄α ⊕ V̄α−1 . Then W̄α is nondegenerate and defined over the subfield

kα of k̄ which is the fixed field of the subgroup of Γ = Gal(k̄/k) fixing the

unordered pair {α, α−1}. Let Wα denote the descent of W̄α over kα. Then

Wα is a direct sum of mα (say) 2-dimensional subspaces, on each of which (a

conjugate of) t restricts to diag{α, α−1} ∈ SO(Wα). Then by the 2-dimensional

situation, there is gα ∈ O(Wα)− SO(Wα), such that g2
α = 1 and gαtg−1

α = t−1.

Let WΓα =
⊕

σ∈Γ Wσα and gΓα =
⊕

σ∈Γ gσα. Then WΓα and gΓα are defined

over k, g2
Γα = 1 and gΓαtg−1

Γα = t−1 on WΓα. Since V is the orthogonal direct
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sum of V±1 and the subspaces WΓα, the result follows from the fact that the

determinant of gΓα = (−1)
1
2

dim WΓα .

Now we take up the case dim(V ) ≡ 2 (mod 4). First we prove,

Lemma 3.4.4: Let t ∈ SO(Q) where dim(V ) ≡ 2 (mod 4). Let t be a semisim-

ple element which has only two distinct eigenvalues λ and λ−1(hence λ 6= ±1)

over k̄. Then t is not real in SO(Q).

Proof. We prove that the element t is not real over k̄. Let dim(V ) = 2m where

m is odd. The element t over k̄ is conjugate to A = diag(λ, . . . , λ
︸ ︷︷ ︸

m

, λ−1, . . . , λ−1

︸ ︷︷ ︸

m

)

with λ 6= ±1 in SO(J) where J is the matrix of the quadratic form over k̄ given

by J = ( 0 S
S 0 ) where

S =









0 0 . . . 0 1

0 0 . . . 1 0
...

...

1 0 . . . 0 0









,

an m×m matrix. Now suppose A is real in SO(J), i.e., there exists T ∈ SO(J)

such that TAT−1 = A−1. Then T maps the λ-eigen subspace of A to the

λ−1-eigen subspace of A and vice-versa. Hence T has the following form:

T =

(

0 B

C 0

)

for m × m matrices B and C. Since T is orthogonal, it satisfies tTJT =

J , which gives tBSC = S. That is, det(B) det(C) = 1. Hence det(T ) =

(−1)m det(B) det(C) = − det(B) det(C) = −1 since m is odd. This contradicts

that T ∈ SO(J). Hence A is not real in SO(J) and hence t is not real in

SO(Q).

Lemma 3.4.5: Let dim(V ) ≡ 0 (mod 4) and t ∈ SO(Q) be semisimple. Sup-

pose t has only two distinct eigenvalues λ and λ−1(hence λ 6= ±1) over k̄. Then,

any element g ∈ O(Q) such that gtg−1 = t−1 belongs to SO(Q), i.e., det(g) = 1.

Proof. We follow the notation in the previous lemma. Let dim(V ) = 2m, where

m is even. As in the proof of the previous lemma, we may assume t is diagonal.

Then any element T that conjugates t to t−1 over k̄, is of the form T = ( 0 B
C 0 ).
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We have det(T ) = (−1)m det(B) det(C) = det(B) det(C) = 1. Since g is a

conjugate of T , the claim follows.

Now we state the main theorem about special orthogonal groups.

Theorem 3.4.6: Let Q be a nondegenerate quadratic form on V , with dimen-

sion of V arbitrary. Let t ∈ SO(Q) be a semisimple element. Then, t is real in

SO(Q) if and only if t is strongly real in SO(Q).

Proof. If dim(V ) 6≡ 2 (mod 4) then the theorem follows from Propositions 3.4.2

and 3.4.3. Hence let us assume that dim(V ) ≡ 2 (mod 4). Let dim(V ) = 2m

where m is odd. In this case we will prove that the element t is real in SO(Q)

if and only if 1 or −1 is an eigenvalue of t.

First we prove that if 1 and −1 are not eigenvalues then t is not real. It is

enough to prove this statement over k̄. We write V̄ = V ⊗k k̄ and continue to

denote t over k̄ by t itself. We have a t-invariant orthogonal decomposition of

V̄ ;

V̄ = V̄1 ⊕ V̄−1 ⊕ V̄λ±1

1

⊕ · · · ⊕ V̄λ±1
r

where V̄1 and V̄−1 are the eigenspaces of t corresponding to 1 and −1 respectively

and V̄λ±1

j
= V̄λj

⊕ V̄λ−1

j
where V̄λj

is the eigenspace corresponding to λj for

λ2
j 6= 1. Since 1 and −1 are not eigenvalues for t, we have V̄1 = 0 and V̄−1 = 0.

If r = 1 it follows from Lemma 3.4.4 that t is not real. Hence we may assume

r ≥ 2. We denote the restriction of t on V̄λ±1

j
by tj . Let the dimension of V̄λ±1

j

be nj . Since λj 6= ±1, nj is even and is either 0 (mod 4) or 2 (mod 4). Let

the number of subspaces V̄λ±1

j
such that nj is 2 (mod 4) be s. Then s is odd,

since dim(V ) ≡ 2 (mod 4). Let g ∈ SO(Q) such that gtg−1 = t−1. Then g

leaves V̄λ±1

j
invariant for all j. We denote the restriction of g on V̄λ±1

j
by gj.

Then gj ∈ O(V̄λ±1

j
) and gjtjg

−1
j = t−1

j . From the previous lemma, determinant

of gj is 1 whenever nj ≡ 0 (mod 4) and the determinant of gj is −1 whenever

nj ≡ 2 (mod 4). Hence the determinant of g is (−1)s = −1, which contradicts

g ∈ SO(Q). Hence t can not be real in SO(Q).

Conversely, if 1 or −1 is an eigenvalue then the subspace V̄1 or V̄−1 is nonzero.

These subspaces are defined over k. Let us denote their descents by V1 and V−1

over k. Then the dimension of V1 and V−1 is even, since dim(V ) ≡ 2 (mod 4).

Note that the restrictions of t to V1 and V−1 are respectively 1 and −1. Write

the restriction of t to W = (V1⊕V−1)
⊥ as a product of two involutions in O(W ).
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If any of these involutions has determinant −1, we write 1 and −1 respectively

on V1 and V−1 as a product of two involutions, each having determinant 1 or −1,

adjusted suitably, so as to get an expression of t as a product of two involutions

in SO(Q).

3.5. Symplectic groups. Now we consider the symplectic group. Let

V be a vector space of dimension 2n with a nondegenerate symplectic

form. We denote the symplectic group by Sp(2n, k). The center of this

group is Z(Sp(2n, k)) = {±1}. We denote the projective symplectic group by

PSp(2n, k) = Sp(2n, k)/Z(Sp(2n, k)). We begin by proving results for reality

in PSp(2, k̄) and PSp(4, k̄), which we use for the general case.

Lemma 3.5.1: Let t ∈ Sp(2, k̄) be a semisimple element. Suppose that t is

either conjugate to t−1 or −t−1. Then the conjugation can be achieved by

an element s ∈ Sp(2, k̄) such that s2 = −1. Hence a semisimple element of

PSp(2, k̄) is real if and only if it is strongly real in PSp(2, k̄).

Proof. We note that Sp(2, k̄) = SL(2, k̄). Hence proof follows from Corol-

lary 3.2.2.

Lemma 3.5.2: Let t ∈ Sp(4, k̄) be a semisimple element. Suppose that t is

either conjugate to t−1 or −t−1. Then the conjugation can be achieved by

an element s ∈ Sp(4, k̄) such that s2 = −1. Hence a semisimple element of

PSp(4, k̄) is real if and only if it is strongly real in PSp(4, k̄).

Proof. Let J = diag
((

0 −1
1 0

)
,
(

0 −1
1 0

))
. Then

Sp(4, k̄) = {A ∈ GL(4, k̄) : tAJA = J}.

We first assume t is conjugate to t−1. We may assume that t=diag(λ, λ−1, µ, µ−1).

We let

g = diag

((

0 −1

1 0

)

,

(

0 −1

1 0

))

∈ Sp(4, k̄).

Then g2 = −1 and gtg−1 = t−1.

Now let t be conjugate to −t−1. Then we may assume that

t = diag(λ, λ−1,−λ,−λ−1).
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Let

g =








0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0








.

Then g belongs to Sp(4, k̄) with g2 = −1 and gtg−1 = −t−1.

Theorem 3.5.3: Let t ∈ Sp(2n, k) be a semisimple element. Suppose t is either

conjugate to t−1 or −t−1. Then the conjugation can be achieved by an element

s ∈ Sp(2n, k) such that s2 = −1. Hence a semisimple element of PSp(2n, k) is

real if and only if it is strongly real in PSp(2n, k).

Proof. First we consider semisimple elements in Sp(2n, k̄). Let t ∈ Sp(2n, k̄)

be semisimple with t conjugate to t−1. Then t can be conjugated to

diag(λ1, λ
−1
1 , . . . , λn, λ−1

n )

and this diagonal element can be conjugated to its inverse by s = diag(N, . . . , N
︸ ︷︷ ︸

n

)

where N =
(

0 −1
1 0

)
. Clearly s2 = −1. A conjugate of s then does the job.

Now let us assume t is conjugate to −t−1 in Sp(2n, k̄). Then t can be conju-

gated to diag(λ1, λ
−1
1 ,−λ1,−λ−1

1 , . . . , λr , λ
−1
r ,−λr,−λ−1

r , µ1, µ
−1
1 , . . . , µs, µ

−1
s )

in Sp(2n, k̄) where µ2
i = ±1. Such an element t can be conjugated to −t−1 by

s = diag(M, . . . , M
︸ ︷︷ ︸

r

, N, . . . , N
︸ ︷︷ ︸

s

) ∈ Sp(2n, k̄) where

M =








0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0








and s2 = −1. This concludes the proof of the theorem over k̄.

We now complete the proof over k. Let t ∈ Sp(V ), where V is a 2n-

dimensional vector space over k. First we assume t is real in Sp(V ).

First note that if t1 ∈ Sp(V1) and t2 ∈ Sp(V2), where V1 and V2 are vector

space over k of dimension 2n1 and 2n2 respectively, and if there exist g1 ∈
Sp(V1) and g2 ∈ Sp(V2) such that gitig

−1
i = t−1

i and g2
i = −1, then t1 ⊕ t2 is

conjugate to its inverse t−1
1 ⊕ t−1

2 by g = g1 ⊕ g2 in Sp(V1 ⊕ V2) and g2 = −1.
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Now let t ∈ Sp(V ) be real. We write V̄ for V ⊗k̄ and V̄α = {x ∈ V̄ : t(x) = αx},
where α ∈ k̄∗. Both V̄1 and V̄−1 are defined over k. Let the subspaces V1 and

V−1 of V be the descents of V̄1 and V̄−1 respectively. We note that the dimen-

sion of V−1 is even, since the determinant of t is 1. We now assume α 6= ±1. Let

W̄α, Wα and kα be defined exactly as in the proof of Proposition 3.4.3. Then

W̄α is a nondegenerate subspace of V̄ . The subspace Wα is a direct sum of mα

two-dimensional subspaces over kα, which are stable under t and t restricted to

each of these 2-dimensional subspace is conjugate to diag{α, α−1}.
By Lemma 3.5.1, there exists gα ∈ Sp(Wα) with g2

α = −1 such that

gαt|Wα
g−1

α = t|−1
Wα

. The subspace WΓα =
⊕

σ∈Γ Wσα is defined over k and

the restriction of t to this subspace is tΓα =
⊕

σ∈Γ tσα, where tσα = t|Wσα
.

Also gΓα =
⊕

gσα is defined over k and conjugates t to t−1 on the subspace

WΓα. We note that the g2
Γα = −1.

Now we write V = V1 ⊕ V−1 ⊕α∈k̄∗ WΓα. Since the dimension of V−1 is even,

we may take g−1 as the direct sum of N =
(

0 −1
1 0

)
on this subspace, 1

2 dim(V−1)

times. Since dim(V ) is even, it follows that dimension of V1 is even and we may

take g1 as the direct sum of N , 1
2 dim(V1) times, on this subspace. Finally we

take g = g1 ⊕ g−1 ⊕α∈k̄∗ gΓα ∈ Sp(2n, k). We have g2 = −1 and gtg−1 = t−1.

Now let us assume that t is conjugate to −t−1. We follow the same proof as

above except that we consider W̄α = V̄α ⊕ V̄α−1 ⊕ V̄−α ⊕ V̄−α−1 when α2 6= ±1.

We construct gΓα using Lemma 3.5.2 in this case. The rest of the proof is along

similar lines as above.

Remark: We give an example to show that there are semisimple real elements

in Sp(4, k) which are not a product of two involutions. Let

J = diag

((

0 −1

1 0

)

,

(

0 −1

1 0

))

be the matrix of the skew-symmetric (symplectic) form. Then Sp(4, k) =

{A ∈ GL(4, k) : tAJA = J}. Let S = diag(λ, λ−1, µ, µ−1) ∈ Sp(4, k) with all

diagonal entries distinct. Then any element T ∈ Sp(4, k), such that TST−1 =

S−1, is of the following type:

T = diag

((

0 −a

a−1 0

)

,

(

0 −b

b−1 0

))

such that T 2 = −1. Hence A is real semisimple but not a product of two

involutions.
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3.6. Unitary groups. In this subsection we deal with unitary groups. Let K

be a quadratic field extension of k. Let V be an n-dimensional vector space

with a nondegenerate hermitian form h. Then

U(V, h) = {t ∈ GL(V ) : h(t(v), t(w)) = h(v, w) ∀v, w ∈ V }

is a k-group. Let k̄ be an algebraic closure of k. We denote V̄ = V ⊗k k̄, a

module over K ⊗k k̄. We define h̄ on V̄ by base change of h to k̄. Then U(V̄ , h̄)

is an algebraic group defined over k and U(V, h) is the group of k-points of

U(V̄ , h̄). Let {e1, . . . , en} be an orthogonal basis of V with respect to h. Let

h(ei, ei) = αi ∈ k and let H = diag(α1, . . . , αn). Then U(V, h) ∼= U(H) = {A ∈
GLn(K) : tAHĀ = H}. We begin with a lemma for V with dim(V ) = 2.

Lemma 3.6.1: Let V be a two dimensional vector space over K with a non-

degenerate hermitian form h. Let e1, e2 be an orthogonal basis of V with

h(ei, ei) = hi and H =
(

h1 0
0 h2

)
. Let A be any diagonal matrix in U(H).

Then A is real in U(H) if and only if h1h2 ∈ NK/k(K∗) and, in that case, it is

strongly real.

Proof. Let A =
(

ξ 0

0 ξ̄

)

∈ U(H). Let T be an element such that TAT−1 = A−1.

Then T is of the form: T = ( 0 b
c 0 ) where h1bb̄ = h2 and h2cc̄ = h1. Hence A is

real in U(H) if and only if h1h2 ∈ NK/k(K∗). And, if the condition holds, we

can take T =
(

0 b
b−1 0

)
. This proves the result.

Theorem 3.6.2: Let (V, h) be a hermitian space over K. Let t ∈ U(V, h) be a

semisimple element. Then, t is real in U(V, h) if and only if t is strongly real.

Proof. Let t ∈ U(V, h) be a real semisimple element. Let g ∈ U(V, h) be such

that gtg−1 = t−1. We base change to k̄ and argue. Since t is real semisimple,

we have a decomposition of V̄ as follows:

V̄ = V̄1 ⊕ V̄−1 ⊕λ∈k̄∗ (V̄λ ⊕ V̄λ−1)

where V̄1, V̄−1, V̄λ and V̄λ−1 are eigenspaces corresponding to eigenvalues 1,−1, λ

and λ−1 respectively. Moreover, this decomposition is an orthogonal decompo-

sition. We denote the subspace V̄λ ⊕ V̄λ−1 by W̄λ. It is easy to see that the

conjugating element g leaves W̄λ invariant. Since V̄λ is nondegenerate, we can

choose an orthogonal basis {e1, . . . , er} for V̄λ. We decompose W̄λ in t invari-

ant planes as follows. Let Pi be the subspace generated by {ei, g(ei)}. Then

V̄λ = P1 ⊕ · · · ⊕ Pr is an orthogonal decomposition. Moreover, t leaves each of
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the Pi invariant. The element ni which maps ei to g(ei) and g(ei) to ei, is a

unitary involution conjugating t|Pi
to its inverse. The element s̄ = n1⊕· · ·⊕nr

conjugates t|W̄λ
to its inverse and is a unitary involution.

Let Wλ be the sum of all Galois conjugates of W̄λ and s be the sum of all

Galois conjugates of s̄. Then Wλ is defined over k and t|Wλ
is conjugate to its

inverse by the involution s defined over k. This gives the decomposition of V as

V = V1 ⊕V−1 ⊕λ Wλ and we have proved that t is a product of two involutions

on each component. Hence t is strongly real.

Corollary 3.6.3: Let t ∈ SU(V, h) be semisimple. Suppose n 6≡ 2 (mod 4).

Then t is real in SU(V, h) if and only if it is strongly real.

Proof. The result follows by keeping track of determinant of the conjugating

element in the proof of Theorem 3.6.2.

Remarks: 1. Let K be a quadratic extension of k. Let V be a two dimensional

vector space over a field K with a nondegenerate hermitian form h defined as

follows. Let {e1, e2} be a basis of V such that h(e1, e1) = 1, h(e2, e2) = −1 and

h(e1, e2) = 0. In the matrix notation, the matrix of the form is H =
(

1 0
0 −1

)

and U(H) = {X ∈ GL2(K) : tXHX̄ = H}. Let A =
(

ξ 0
0 ξ̄

)

∈ SU(H) where

ξ 6= ξ̄. Then A is semisimple. Let T ∈ GL2(K) such that TAT−1 = A−1. Then

T is of the form T = ( 0 b
c 0 ). Note that A is real in U(H) if and only if there

exists T = ( 0 b
c 0 ) with bb̄ = −1 and cc̄ = −1. The element A is not strongly real

in SU(H). For T to be in SU(H) we need bc = −1 and this implies T 2 = −1.

Hence no involution conjugates A to its inverse. But if K has an element b such

that bb̄ = −1, then A can be conjugated to A−1 by T such that T 2 = −1. For

example one can take K = Q(
√

2) and k = Q.

2. Let V be a two dimensional vector space over K with a hermitian form

h on it. Let K = k(γ). Let {e1, e2} be a basis of V such that h(e1, e1) =

0, h(e2, e2) = 0 and h(e1, e2) = γ = −h(e2, e1). In the matrix notation, the

matrix of the form is H =
( 0 γ
−γ 0

)
and U(H) = {X ∈ GL2(K) : tXHX̄ = H}.

Let A = ( 1 1
0 1 ) ∈ SU(H). Then A is a unipotent element. Let T ∈ GL2(K)

be such that TAT−1 = A−1. Then T is of the form T =
(

a b
0 −a

)
. Note that

A is real in U(H) if and only if there exists T =
(

a b
0 −a

)
with aā = −1 and

ab̄− āb = 0. Here T 2 = a2I. The element A is not strongly real in SU(H). For

if so, we would have a2 = 1 and aā = −1, which would imply that γ is a square

in k. Hence no involution conjugates A to its inverse. But if k has an element a
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such that a2 = −1, then A is conjugate to its inverse by T such that T 2 = −1.

For example one can take k = Q(
√
−1) and K = Q(

√
−1,

√
5).

Appendix A. G2 revisited

We take this opportunity to improve our result in [ST05] for all elements in

G2. Let G be a group of type G2 defined over k. In [ST05], we proved that a

semisimple element in G(k) is k-real if and only if it is strongly k-real and that

unipotent elements in G(k) are strongly k-real. In this section we show that

all real elements of G(k) are strongly real in G(k). Since the proof is obtained

by modifying the proof in the semisimple case, we shall refrain from repeating

proofs of statements which are already there and provide appropriate references.

We follow the notation introduced in [ST05], Section 6.

A.1. Reality in groups of type G2. Let G be a group of type G2 defined

over a field k (of characteristic 6= 2). Then, there exists an octonion algebra C

over k such that G ∼= Aut(C) (Chapter III, Proposition 5, Corollary in [Se97]).

Let t0 be an element of G(k). We will also denote the image of t0 in Aut(C)

by t0. We let Vt0 = ker(t0 − 1)8. Then Vt0 is a composition subalgebra of C

with norm as the restriction of the norm on C ([W69]). Let rt0 = dim(Vt0 ∩C0),

where C0 denotes the subspace of elements of trace 0 in C. Then rt0 is 1, 3 or

7. We note that if rt0 = 7, the characteristic polynomial of t0 is (X − 1)8 and

t0 is unipotent. We have ([ST05], Theorem 6.3),

Lemma A.1.1: Let t0 ∈ G(k) be a unipotent element. In addition, we assume

char(k) 6= 3. Then t0 is strongly real in G(k).

Let L ⊂ C be a quadratic étale subalgebra. Let

G(C/L) = {φ ∈ G : φ(x) = x, ∀x ∈ L}.

Recall from [ST05], when L is a quadratic extension of k, G(C/L) ∼= SU(L⊥, h),

for a nondegenerate hermitian form h on the 3 dimensional L-vector subspace

L⊥ of C. When L is split, G(C/L) ∼= SL(3).

Lemma A.1.2: Let t0 ∈ G(k) be an element which is not unipotent. Then,

either t0 leaves a quaternion subalgebra invariant or fixes a quadratic étale

subalgebra L of C pointwise.
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Proof. Since t0 is not unipotent, from the above discussion, we see that rt0

is 1 or 3. In the case rt0 = 1, L = Vt0 is a two dimensional composition

subalgebra and has the form Vt0 = k.1 ⊕ (Vt0 ∩ C0), an orthogonal direct sum.

Let L∩ C0 = k.γ with N(γ) 6= 0. Since t0 leaves C0 and Vt0 invariant, we have,

t0(γ) = γ and hence t0(x) = x ∀x ∈ L, so that t0 ∈ G(C/L). When rt0 is 3, the

subalgebra Vt0 is a quaternion algebra, left invariant by t0.

If t0 leaves a quaternion subalgebra invariant, t0 is strongly real in G(k). This

follows from Theorem 4 in [W69] (see also Theorem 6.1 in [ST05]). We discuss

the other cases here, i.e., the fixed points of t0 form a quadratic étale subalgebra

L of C.

1. The fixed subalgebra L is a quadratic field extension of k and

2. the fixed subalgebra is split, i.e., L ∼= k × k.

By the above discussion, in the first case, t0 belongs to G(C/L) ∼= SU(L⊥, h)

(Proposition 3.1 in [ST05]). We write C = L ⊕ V , where V = L⊥ is a 3-

dimensional L-vector space with hermitian form h induced by the norm on C.

In the second case, t0 belongs to G(C/L) ∼= SL(3) (Proposition 3.2 in [ST05]).

We denote the image of t0 by A in both of these cases. The characteristic

polynomial χA(X) and the minimal polynomial mA(X) of A will be refered to

over L, in the first case and over k, in the second case. We analyze further the

cases depending on the characteristic polynomial of A. We mention a result of

Neumann here ([N90], Satz 6 and Satz 8).

Proposition A.1.3: Let the notation be as above. Let t0 ∈ G(C/L). Assume

that the characteristic polynomial of A is reducible and the minimal polynomial

of A is not of the form (X − α)3. Then t0 is strongly real.

We have the following,

Theorem A.1.4: Let G be a group of type G2 over a field k of characteristic

not 2. Let t0 ∈ G(k) be an element which is not unipotent. Then, t0 is real in

G(k) if and only if t0 is strongly real in G(k). In addition, if char(k) 6= 3 then

every unipotent element in G(k) is strongly real in G(k).

Proof. The assertion about unipotents in G(k) is Lemma A.1.1. In view of

Lemma A.1.2 and discussion following the lemma, we need to consider the case

when t0 ∈ SU(V, h) or t0 ∈ SL(3). In these cases, we consider the characteristic

polynomial χA(X) and the minimal polynomial mA(X) of A. We first assume
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that χA(X) 6= mA(X). Hence degree of mA(X) is at most 2 and χA(X) is

reducible. Clearly the minimal polynomial is not of the form (X − α)3. Then

by Proposition A.1.3, t0 is strongly real. We take up the case of A with χA(X) =

mA(X) below.

The result follows from

Theorem A.1.5: Let t0 be an element in G(k) and suppose t0 fixes exactly a

quadratic étale subalgebra L of C pointwise. Let us denote the image of t0 by A

in SU(V, h) or in SL(3) as the case may be. Also assume that the characteristic

polynomial of A over L in the first case and over k in the second, is equal to

the minimal polynomial of A. Then t0 is conjugate to t−1
0 in G(k) if and only

if t0 is strongly real in G(k).

Proof. We distinguish the cases of both these subgroups below and complete the

proof in the next two subsections, see Theorem A.2.3 and Theorem A.3.4.

Corollary A.1.6: Let characteristic k 6= 2, 3. Then, an element t ∈ G(k) is

real in G(k) if and only if t is strongly real in G(k).

A.2. SU(V, h) ⊂ G. We continue with notation introduced in the last section.

We assume that L is a quadratic field extension of k. Let t0 be an element

in G(C/L) with characteristic polynomial of the restriction to V , equal to its

minimal polynomial over L, i.e., χA(X) = mA(X). We then have G(C/L) ∼=
SU(V, h).

Lemma A.2.1: Let t0 be an element in G(C/L) which does not have a nonzero

fixed point outside L. Suppose that ∃g ∈ G(k) such that gt0g
−1 = t−1

0 . Then

g(L) = L.

Proof. Suppose g(L) 6⊂ L. Then, as in the proof of Lemma 6.2 in [ST05], there

exists x ∈ L ∩ C0, a nonzero element, such that g(x) 6∈ L. Since t0(x) = x, it

follows that t0(g(x)) = g(x). Hence t0 fixes g(x) 6∈ L, a contradiction.

We fix the basis for V over L introduced in the Section 6.1 in [ST05].

Let us denote the matrix of h with respect to this basis by H = diag(λ1, λ2, λ3)

where λi = h(fi, fi) ∈ k∗. Then SU(V, h) is isomorphic to SU(H) =

{A ∈ SL(3, L) : tAHĀ = H}, where a 7→ ā is the nontrivial k-automorphism of

L and Ā is the matrix obtained by applying this automorphism to the entries

of A.
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Theorem A.2.2: Let the matrix of t0 be A ∈ SU(H). Suppose that t0 does

not have a nonzero fixed point outside L. Then t0 is conjugate to t−1
0 in G(k),

if and only if Ā is conjugate to A−1 in SU(H).

Proof. Let g ∈ G(k) be such that gt0g
−1 = t−1

0 . By Lemma A.2.1, we have

g(L) = L. Recall that G(C, L) ∼= G(C/L) ⋊ N , where N = 〈ρ〉 and ρ is an

automorphism of C with ρ2 = 1 and ρ restricts to the nontrivial automorphism

of L. Using similar arguments as in the proof of Theorem 6.5 in [ST05], we

conclude that Ā is conjugate to A−1 in SU(H). Conversely, let BĀB−1 = A−1

for some B ∈ SU(H). Let g′ ∈ G(C/L) be the element corresponding to B.

Then g′ρ conjugates t0 to t−1
0 .

Theorem A.2.3: Let t0 be an element in G(C/L) which does not have a fixed

point outside L and let A denote the image of t0 in SU(H). Suppose the

characteristic polynomial of A is equal to its minimal polynomial over L. Then

t0 is conjugate to t−1
0 , if and only if t0 is a product of two involutions in G(k).

Proof. From Theorem A.2.2 we have, t0 is conjugate to t−1
0 , if and only if Ā is

conjugate to A−1 in SU(H). From Lemma 6.5 in [ST05], Ā is conjugate to A−1

in SU(H) if and only if A = A1A2 with A1, A2 ∈ SU(H) and Ā1A1 = I = Ā2A2.

Now, from Proposition 6.1 in [ST05], it follows that t0 is a product of two

involutions.

A.3. SL(3) ⊂ G. We continue here with proof of the Theorem A.1.5. Let us

assume now that L ∼= k × k. We have seen in [ST05], Section 3 that G(C/L) ∼=
SL(3). Let t0 be an element in G(C/L) and denote its image in SL(3) by A. We

assume that the characteristic polynomial of A ∈ SL(3) is equal to its minimal

polynomial over k.

Lemma A.3.1: Let t0 be an element in G(C/L) which does not have a fixed

point outside L. Suppose that ∃h ∈ G = Aut(C), such that ht0h
−1 = t−1

0 .

Then h(L) = L.

Proof. The proof is similar to that of Lemma A.2.1.

From Theorem 3.1.1 it follows that if t0 is conjugate to t−1
0 in G(C/L) ∼= SL(3)

then t0 is strongly real. Hence we may assume that A is not real in SL(3).
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Theorem A.3.2: Let A be the matrix of t0 in SL(3) and assume that A is not

real in SL(3). Then t0 is conjugate to t−1
0 in G = Aut(C), if and only if A is

conjugate to tA in SL(3).

Proof. Let h ∈ G be such that ht0h
−1 = t−1

0 . Then, by the lemma above,

h(L) = L. We may assume that ([ST05], Section 2)

C =

{(

α v

w β

)

: α, β ∈ k; v, w ∈ k3

}

with L =

{(

α 0

0 β

)

: α, β ∈ k

}

.

Recall that G(C, L) ∼= G(C/L) ⋊ H , where H = 〈ρ〉 and ρ is the automorphism

of C which flips the diagonal and the anti-diagonal entries of a given element

of the split octonion algebra C and the action of SL(3) ∼= G(C/L) is as follows

(see [ST05], Section 3): for A ∈ SL(3) and for

X =

(

α v

w β

)

∈ C, AX =

(

α Av
tA

−1
w β

)

.

Hence, by the above lemma, h ∈ G(C/L) ⋊ H . Since A is not real in SL(3),

h /∈ G(C/L). Hence h = gρ for some g ∈ G(C/L). Let B denote the matrix of g

in SL(3). Then, a computation same as in the proof of Theorem 6.7 of [ST05],

shows

ht0h
−1 = t−1

0 ⇔ A = BtAB−1.

Therefore t0 is conjugate to t−1
0 in G(k) if and only if A is conjugate to tA in

SL(3).

Lemma A.3.3: Let A be a matrix in SL(n) with its characteristic polynomial

equal to its minimal polynomial. Then A is conjugate to tA in SL(n) if and

only if A is a product of two symmetric matrices in SL(n).

Proof. The proof is exactly same as the proof of Lemma 6.10 in [ST05].

Theorem A.3.4: Let t0 ∈ G(C/L). Assume that the characteristic polynomial

of the matrix A of t0 in SL(3) is equal to its minimal polynomial. Then, t0 is

conjugate to t−1
0 in G = Aut(C) if and only if t0 is a product of two involutions

in G(k).

Proof. First, let t0 be real in G(C/L). Then, A is real in SL(3) and hence it

is strongly real (see Theorem 3.1.1). Thus the element t0 is strongly real in

G(k). Now we assume t0 is not real in G(C/L), i.e., A is not real in SL(3). In
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this case, the element t0 can be conjugated to t−1
0 in G(k) if and only if, A can

be conjugated to tA in SL(3) (Theorem A.3.2). This is if and only if, A is a

product of two symmetric matrices in SL(3) (Lemma A.3.3). By Proposition 6.5

in [ST05], this is if and only if t0 is a product of two involutions in Aut(C).
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